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The effect of a high magnetic field on the velocity of sound in single crystals of Cu, Ag, Au, Al, Ta, and V 
was measured using a 10-Mc/sec ultrasonic pulse technique. In agreement with theory, the velocity was 
found to increase as the square of the applied field and the dependence on the angle between the propagation 
direction and the applied field was also verified. Quantitative agreement with the macroscopic theory 
was excellent in the case of high conductivity metals but a slight disagreement was found at lower con
ductivities. Investigation of the effect at 4.2°K in extremely high purity copper where the macroscopic 
theory should no longer apply showed that for the field in certain crystallographic directions the velocity 
of sound no longer varied as the square of the magnetic field but increased linearly with field. These direc
tions appear to correspond to some of the "open orbit" directions determined from magnetoresistance studies. 

INTRODUCTION 

RECENTLY there has been a renewal of theoretical 
interest in the very small change of the velocity 

of sound in metals produced by a static magnetic field. 
Rodriguez1 has generalized the original macroscopic 
theory of Alfer and Rubin2 and Harrison8 has proposed 
a microscopic theory. All of these theories predict that 
the velocity of sound increases as the square of the 
applied magnetic field. The experiments of Galkin and 
Koroliuk4 and of Beattie, Silsbee, and Uehling5 have 
verified this field dependence in a few polycrystalline 
metals. However, if the effect is to show up any charac
teristics of the Fermi surface, experiments on single 
crystals must be carried out. It is the purpose of this 
paper to present the results of a series of measurements 
on single crystals of various purities and at a variety of 
temperatures in order to learn the conditions under 
which the present theories prove inadequate and to 
provide some guide lines for further theoretical 
development. 

MACROSCOPIC THEORY 

According to the theory of Alfer and Rubin2 the 
effect arises from the fact that a sound wave forces a 
mechanical motion on the charged particles in a con
ducting medium. In the presence of an external mag
netic field these moving charges are deflected and a 
transverse current analogous to a Hall current is set up. 
The interaction of this current with the external field 
produces a force which adds to the ordinary elastic 
forces existing in the medium. Since the sound wave is 
periodic in time, the Hall current is time dependent and 
thus magnetic and electric fields are induced in accord
ance with Maxwell's equations. Using j to represent the 
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current, e the induced electric field, and h the induced 
magnetic field, one can immediately write down the 
relations (in cgs units) 

j = ac+(o-/*A)[vX(H+h)], (1) 

curlc=-0*A)(dh/«), (2) 

curl(H+h)=(4rA)j , (3) 

in which a is the conductivity of the material, H the 
large external applied field, and v the instantaneous 
velocity of the charges. These equations are valid in a 
metal only so long as the electrons are tightly coupled 
to the sound wave. This requires that the mean free 
path / of the electrons be short compared to the 
acoustic wave length X. Furthermore, Alfer and Rubin 
set v in Eq. (1) equal to the time derivative of the 
material displacement. This is acceptable only if the 
component of velocity produced by the magnetic field 
in the direction of vXH is small compared to v. It can 
easily be shown that this condition leads to requiring 
cocr<<Cl, where coc is the cyclotron frequency eH/rnc 
and r is the mean time between collisions. 

Under these two approximations (o>cr<3Cl and X»Z), 
the force exerted on the current j by the applied field 
makes the equation of motion governing sound wave 
propagation in an isotropic material become: 

a2s 
dt2 2(1+*} 

fv2s+ V(V-s)l 
L 1 - 2 P J 

+~[ jX(H+h)] , (4) 

where s is the medium displacement and p, E, and v are 
the mass density, Young's modulus, and Poisson's ratio 
of the medium, respectively. Using Eqs. 1, 2, and 3 to 
eliminate the variables e and j , and by letting ds/dt— v, 
it can be shown that Eq. (4) leads to a velocity for 
longitudinal sound waves given by 

Ci=CoJ~l+ 
ixW sin20 

&rpCo!2(l+47r4S4/X4) A (5) 
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and for shear waves 

Ca=Cos\ 1 + ?a = Co* 1 
ixH2 cos20 

87rpCos
2(l+4ir454A4) >4/X4)J 

(6) 

in which 0 is the angle between the propagation direction 
and the field. The quantity 8 is the skin depth that an 
electromagnetic wave with the same frequency as the 
sound wave would have in the material. It is related to 
the conductivity by 

5= (c2/2m<rix)112. (7) 

It is interesting to note that the magnitude of the effect 
is determined primarily by the ratio of the magnetic 
field energy density to a mechanical energy density 
expressed by the elastic modulus pC2. The fact that the 
material is a conductor enters the result only through 
a term which makes a negligible contribution in good 
conductors. 

It is also interesting that the angular dependence for 
shear waves concerns the propagation direction and not 
the direction of particle motion even though it is the 
latter direction which determines the induced currents. 
This result comes about from the algebra of the differ
ential operators in the equations. 

EXPERIMENTAL TECHNIQUE 

It can be seen from Eqs. (5) and (6) that the application 
of a 10-kOe magnetic field may be expected to change 
the sound velocity by only a few parts in a million. Such 
a change is easily detected and measured by the ultra
sonic "sing-around" system developed to a high degree 
in this laboratory by Forgacs.6 In this apparatus, a 
10-Mc/sec acoustic pulse is sent through the sample in 
such a way that the transit time becomes the period of 
oscillation of an oscillator. Changes in the sound velocity 
produce changes in the transit time which in turn are 
measured as changes in the oscillator frequency. 

The most serious problem associated with the use of 
this system arises from the temperature dependence of 
the velocity of sound. For most metals, the temperature 
coefficient of sound velocity is of the order of several 
hundred parts per million (ppm) per degree Kelvin. 
Thus, measuring a one-ppm effect requires that the 
specimen temperature must not change by more than 
0.001 °K during the measurement. Several schemes of 
temperature control were attempted with no success. 
The final arrangement involved simply allowing the 
temperature to drift and correcting the measurements 
accordingly. By simply wrapping the specimen and 
holder in cotton and by measuring the velocity change 
produced by turning the magnetic field from zero to 
some predetermined value, it was found possible to 
make the correction for temperature drift negligibly 
small. Using this technique the coefficient of the H2 

H2 {I080.2] 

FIG. 1. Variation of the velocity of a longitudinal sound wave 
in gold as a function of the applied magnetic field. The solid line 
is predicted by the theory. Propagation direction is [110]. 

term in Eqs. (5) and (6), hereafter referred to as 7, 
could be measured to ztO.lXl^1 4 Oe-2 or about ± 5 % . 

The magnetic field was supplied by an ADL Electro
magnet operated with 5-in.-diam pole pieces separated 
by a 2-in. gap. With this arrangement, fields up to 21 
kOe could be obtained. The field was measured with a 
Rawson rotating-component gaussmeter. Because the 
metal specimens were all smaller than a one-inch cube, 
no trouble with magnetic field inhomogeneity was 
encountered. 

Since the purpose of the experiment was to find how 
well the macroscopic theory could be applied to real 
crystalline metals, all the specimens used were single 
crystals oriented in such a way that the sound traveled 
along principal crystallographic directions and, hence, 
were pure modes. Both longitudinal and shear type 
waves were used. The specimen holders were designed 
to hold the acoustic propagation direction fixed in the 
laboratory while the magnetic field direction could be 
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6 R. L. Forgacs, IRE. Trans. Instr. 9, 359 (1960). 

FIG. 2. Variation of the change in sound velocity accompanying 
the application of a 21-kOe magnetic field with the angle 0 between 
the field direction and the C110J propagation direction. The solid 
lines are the angular dependence predicted by the theory. 
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TABLE I. Numerical results of the effect of a magnetic field on the velocity of sound. K is the propagation vector, u the polarization 
vector, and Co the velocity of the sound wave. The experimental value for the coefficient of the H2 term in Eq. (5) or (6) is represented 
by Ye and the theoretical value by yc. The electrical conductivity of the metal sample is given by <r. 

Metal 

Cu 

Au 

Ag 

Al 

Ta 

V 

K 

[110] 
[111] 
[110] 
[110] 

[110] 
[110] 
[110] 

[100] 

[110] 

[100] 
[100] 

[110] 
[110] 
[HO] 

u 

[110] 
[111] 
[001] 
[110] 

[110] 
[001] 
[iio] 

[100] 

[110] 

[100] 
[001] 

[110] 
[001] 
[Ho] 

Co 
(10s cm/sec) 

4.97 
5.16 
2.91 
1.62 

3.37 
1.47 
0.87 

3.44 

6.46 

4.00 
2.22 

6.65 
2.66 
3.01 

(106 mho/cm) 

0.591 

0.41 

0.682 

0.354 

0.064 
0.04 

l /87TpC 0
2 

(10~14 Oe~2) 

1.79 
1.67 
5.25 

16.8 

1.80 
9.44 

27.3 

3.20 

3.50 

1.48 
4.85 

1.84 
9.34 
7.28 

7c 
(10~14 Oe~2) 

1.79 
1.67 
5.25 

15.04 

1.78 
7.19 
7.56 

3.19 

3.49 

1.19 
1.39 

1.72 
3.32 
2.84 

Ye 

(lO"14 Oe~2) 

1.8 
1.6 
5.4 

14.3 

1.8 
6.8 
8.1 

3.2 

3.2 

1.1 
1.6 

1.4 
3.3 
1.8 

7c-7e 

(lO"14 Oe~2) 

0 
+0.1 
- 0 . 1 
+0.7 

0 
+0.4 
- 0 . 5 

0 

+0.3 

+0.1 
- 0 . 2 

+0.3 
0 

+1.0 

rotated either about the propagation direction or in a 
plane containing it. 

For tests below room temperature, the crystal and its 
support were surrounded by liquid nitrogen or liquid 
helium contained in a metal Dewar flask designed to fit 
inside the 2-in. magnetic gap and still accomodate the 
specimen holder. 

RESULTS 

The theoretical result expressed in Eq. (5) predicts 
that the velocity of a longitudinal sound wave should 
increase as the square of the magnetic field. Thus a plot 
of the relative change in velocity vs H2 should be a 
straight line whose slope is given by the reciprocal of 
SwpCo2 if the field is perpendicular to the propagation 
direction and 5«X. Figure 1 shows an example of data 
obtained under these conditions on a gold single crystal 
in which the longitudinal wave was propagated along 
a [110] crystal axis. The solid line on the graph has the 
slope predicted by the theory. It is obvious that the 
theory and experiment agree both qualitatively and 
quantitatively. Changing the field direction in the plane 
perpendicular to the propagation direction showed no 
anisotropy and simply reproduced the data shown. 

The theory also predicts that the sound velocity 
change should depend on the square of the sine of the 
angle between the propagation direction and the mag
netic field for a longitudinal wave and on the square of 
the cosine of the angle for shear waves. Figure 2 shows 
data on gold where the velocity change produced by 
the application of a 21-kOe field is plotted against the 
angle between the field and the propagation directions. 
The solid lines are plots of cosine squared and sine 
squared functions. Again the agreement is excellent. 

For the cases discussed above, the inequality £<A 
was satisfied and the magnitude of the effect was inde
pendent of the material conductivity and determined 
solely by the value of pCo2 in the particular specimen. 
This inequality is not satisfied in many cases for which 
the electrical conductivity is not very high or the sound 
waves have short wave length. The column labelled 
1/SirpCo2 in Table I gives the value of the coefficient of 
H2 in the high-conductivity or long-wavelength limit 
while the column labeled yc gives the value of this 
coefficient calculated using values of the electrical con
ductivity given in the American Institute of Physics 
Handbook,7 (The conductivity of the vanadium sample 
was measured in this laboratory using the method of 
Zimmerman.8) By comparing these two columns, the 
magnitude of the correction introduced by a finite 
conductivity or a short wavelength can be seen. The 
column labeled ye gives the experimentally measured 
values of the coefficient of the H2 term as determined 
from the slope of the straight line on a AC/C vs H2 plot. 
Comparison of ye and yc shows the degree of agreement 
between the macroscopic theory and the measurements. 
The last column presents the difference between theory 
and experiment and is to be compared with the experi
mental error in measuring the coefficient of H2 of 
dbO.lXlO-14 Oe"2. In all the cases where 5«X, agree
ment is within experimental error. Agreement is fair in 
the cases where a correction for finite conductivity was 
used. This would indicate that the conductivity 
correction in the macroscopic theory is nearly correct 
but not quite. 

7 American Institute of Physics Handbook (McGraw-Hill Book 
Company, Inc., New York, 1957), p. 5-204. 

8 J. E. Zimmerman, Rev. Sci. Instr. 32, 402 (1961). 
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TABLE II . Temperature dependence of the coefficient of the H2 

term in Eq. (5) for the noble metals. For these metals 5<3CX. Unit s 
of 10~M Oe-2. 

H [KOe] 

FIG. 3. Variation of the attenuation in amplitude of a 10-Mc/sec 
longitudinal wave propagating along a [110] crystal axis in a 
very pure copper crystal as a function of field strength. The field 
was always perpendicular to the propagation direction and 
directed along the crystallographic directions indicated. 

The effect of the specimen temperature enters the 
theory mainly through the correction for finite con
ductivity so that lowering the temperature (raising 
conductivity) should make the magnitude of the effect 
approach a nearly temperature independent value of 
l/8irpCo2. Table II gives the results of measurements on 
longitudinal waves in the noble metals at 300, 77, and 
4.2°K. In all these cases, the finite conductivity correc
tion is negligible and the measured y values are indeed 
temperature independent as predicted. 

The macroscopic theory is based on the assumption 
that the electrons in the metal follow exactly the 
mechanical movement produced by the sound wave. 
This is certainly not the case when the electron mean 
free path becomes comparable to the sound wave length. 
It is, therefore, of vital interest to determine experi
mentally just how the sound velocity is changed by a 
magnetic field in a specimen in which this approxima-

FIG. 4. Polar plot 
of the attenuation 
change produced by 
the application of a 
17.5-kOe magnetic 
field to the pure 
copper crystal. The 
propagation direc
tion of the longitu
dinal sound wave 
involved is along a 
[110] direction. The 
angles A, B, and C 
denote directions 
along which the 
magnetic field de
pendence of the 
velocity of sound 
was measured. 

300°K 
77°K 
4°K 

Cu 

2.5 
2.5 
2.6 

Ag 

1.8 
1.9 
1.9 

Au 

1.8 
1.8 
1.7 

tion is no longer valid. Such an experiment is compli
cated by the fact that under these same conditions the 
electrons absorb energy from the acoustic wave in a 
way that depends not only on the magnitude of an 
external field but also on its crystallographic direction. 
Figure 3 shows how the ultrasonic attenuation of a 
longitudinal wave was observed to vary with field in a 
special high purity copper crystal at 4.2°K. From the 
magnitude of the total attenuation change and the 
calculations of Steinberg,9 it is possible to estimate that 
the ratio of electron mean free path to acoustic wave
length (at 10 Mc) is of the order of 0.08 in this sample. 
Unfortunately, these attenuation changes make the 
behavior of the "sing-around" system somewhat 
dubious because its oscillation frequency depends not 
only on the acoustic pulse transit time but also on the 
pulse height. This pulse height sensitivity can be 
compensated for by changing the gain in the oscillator 
loop but there is no assurance that such a gain change 
will not introduce a frequency shift by itself. It is, 
therefore, safest to operate the "sing-around" system 
under conditions of no attenuation change. For this 
reason, the field induced velocity changes were meas
ured only at fields higher than 6 kOe and at a fixed 
orientation. 

The choice of orientation is best discussed in terms 
of Fig. 4 which shows a polar diagram of the difference 
in attenuation between 0 and 17.5 kOe for various field 
directions in the plane perpendicular to the propagation 
direction. Figure 5 shows the change in the velocity of 
a longitudinal sound wave relative to its value at 6 kOe 
as a function of magnetic field at the various angles 
designated on Fig. 4. The solid curve is the parabola 
predicted by the macroscopic theory applicable at short 
electron mean free paths. It appears that in the principal 
crystallographic directions (except possibly the [110] 
direction) the macroscopic theory satisfactorily accounts 
for the observed variation of the sound velocity. If the 
field is along those directions for which the attenuation 
change is a maximum (directions A and B in Fig. 4), the 
velocity appears to vary linearly with applied field. 
Other nonprincipal directions (marked on Fig. 4 with 
the letter C) were also studied but these directions acted 
like the principal directions giving the same H2 depend
ence predicted by the theory. 

Figure 6(a) presents an enlarged polar plot of one 

9 M. S. Steinberg, Phys. Rev. I l l , 425 (1958). 
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FIG. 5. Variation of the velocity of sound with magnetic field in 
the constant attenuation region above 6 kOe for various field 
directions in the plane perpendicular to the [ 1 1 0 ] propagation 
direction. Longitudinal waves in copper. 

quadrant of the attenuation versus magnetic field 
direction data shown in Fig. 4. The field directions along 
which the velocity of sound varies as the first power of 
the field are marked by the letters A and B. This plot 
is very similar to the polar diagram obtained by 
Alekseevskii and Gaidukov10 who measured the varia
tion of the electrical resistance of a high-purity copper 
crystal in which the current flowed along the [110] 
crystal axis and a field of 23 kOe was rotated in a plane 
perpendicular to the current direction. Figure 6(b) 
shows their results with the directions A and B super
imposed. Alekseevskii and Gaidukov point out that in 
the directions in which Ap/p is a maximum, the resis
tivity increases nearly with the square of the magnetic 
field while the directions of minimum Ap/p are those in 
which the resistivity "saturates" by approaching a 
field independent value. The former directions are "open 
orbit" directions for the electrons.11 It appears by 
comparing Figs. 6(a) and 6(b) that the velocity of sound 
varies linearly with magnetic field in two of the several 
"open orbit" directions. The reason that the sound 
velocity picks out only two directions is not understood. 
However, it is important to realize that in the magneto-
resistance measurements the current was restricted to 
a [110] crystal direction while in the acoustic measure-

10 N . E. Alekseevskii and Yu. P. Gaidukov, Soviet Phys.—TETP 
10, 481 (1960). J 

11 R. G. Chambers, in The Fermi Surface, edited by W. A. 
Harrison and M. B. Webb (John Wiley & Sons, Inc., New York, 

(a) (b) 
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FIG. 6. (a) Magnified polar plot of the attenuation change 
accompanying the application of a 17.5-kOe magnetic field, (b) 
Variation of electrical resistivity with field direction in pure Cu 
at 23 kOe (data of reference 10). 

ments it is only the sound wave propagation direction 
that is fixed parallel to [110]. Equation (1) indicates 
that in the acoustic experiment the current direction 
is at right angles to the propagation direction and the 
magnetic field so that as the magnetic field is rotated, 
the current changes crystallographic directions. 

CONCLUSION 

The data shows that as long as the electron mean free 
path and the electromagnetic penetration depth are 
short compared to the acoustic wavelength, the macro
scopic theory of Alpher and Rubin provides a quantita
tive description of all the observations. In cases where 
the penetration depth is comparable to the wave length 
the theory predicts a correction factor which is very 
slightly smaller than needed for perfect agreement. For 
the case in which the mean free path is comparable to 
the wavelength, the macroscopic theory still seems to 
apply except in certain particular directions of the 
magnetic field. These directions correspond to at least 
some of the open orbit directions appearing in magneto-
resistance measurements. In these special directions the 
velocity of sound varies linearly with magnetic field 
between 6 and 21 kOe. 
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